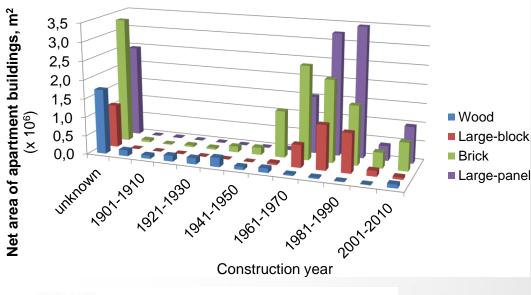
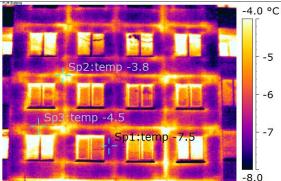
Deep integrated renovation – the Estonian KredEx renovation grant programme experience


Jarek Kurnitski May 17, 2018 Tallinn

Apartment building stock

- ~65% population living in apartment buildings
- ~95% of apartments are in private ownership
- not insulated, not ventilated ...

Apartment building stock



	INN UNIVERSITY OF		KREDEX
Energy Certificate Class	G	F	F
Primary Energy, kWh/(m² [.] a)	311	263	224
Electricity, kWh/(m² [.] a)	58	35	32
DHW, kWh/(m² [.] a)	36	27	37
Space heating, kWh/(m ^{2·} a)	211	150	136

Housing stock – condition

Building envelope

- prefabricated concrete large-panel wall U ≈ 0.8-1.2W/(m²·K)
- brick wall (with 60mm of insulation) U ≈ 0.8-1.2W/(m²·K)
- autoclaved aerated concrete block wall U ≈ 0.6-0.8W/(m²·K)

25.0 °C

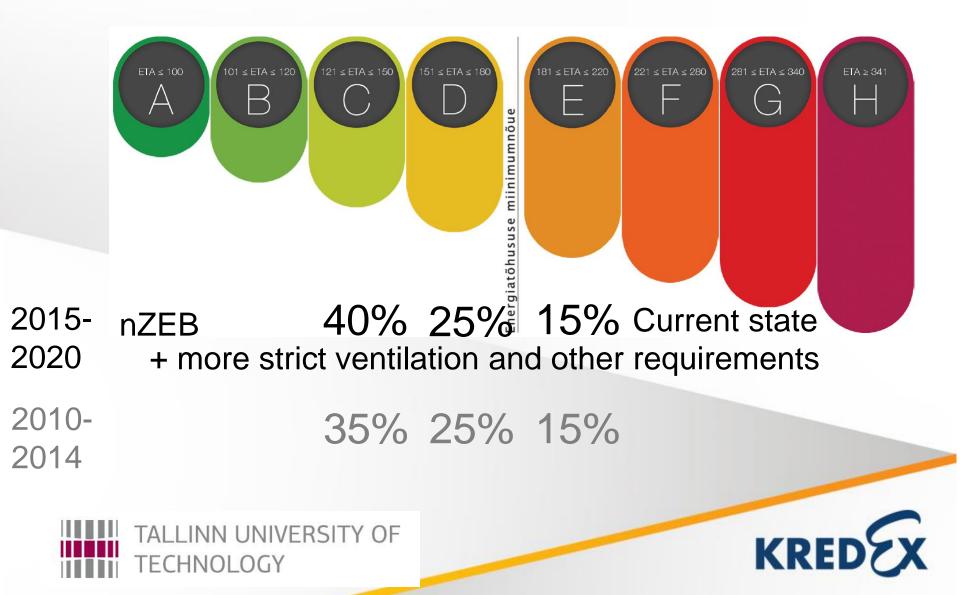
- 20

- 15

- 10

significant thermal bridges

Housing stock - ownership


- Over 90% of housing stock is in private ownership
- ~82% of dwellings owner occupied
- Managed by Apartment Associations (legal body, non-profit association)
- All apartment owners are responsible for decisions and payments
- 50%+1 majority

Grants 15%, 25% and 40%

Main steps in the KredEx grant application process

- Housing association decision simple majority 50% +1 in general assembly meeting
- Qualified technical consultant steering the preparation
- Energy audit/EPC of the building and investigations (stacks etc.)
- Detailed technical design: full set of building design documents (including calculated EPC for compliance approval)
- Building permit applied/issued
- Credit decision from bank issued
- Grant application to KredEx:
 - Investigation of design documents by third party experts (KredEx)
 - Revision of design documentation if needed (applicant)
 - Funding decision by KredEx if all requirements met
- Tendering with contractors
- Construction (KredEx has special supervision rights)
- Commissioning protocols for ventilation rates and heating system

KRE

- Grant payment by KredEx after handing over
- EPC based on measured use after one year operation

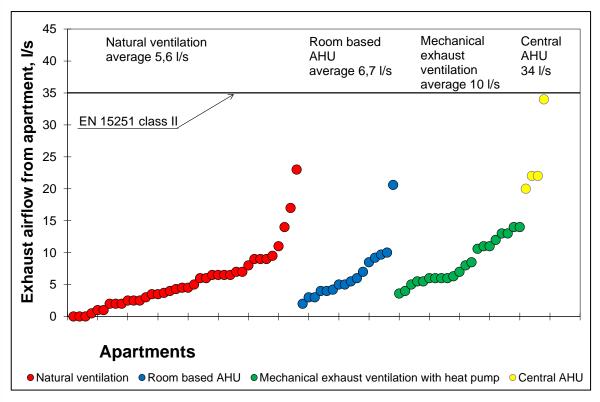
Results 2010-2014 (old system)

- Grants 38 million euros
- Total investments 135 million euros
- 35% grant most popular (>50% in last years)
- Renovated apartment buildings 663 (of total of about 20 000 apartment buildings)
- Renovated net area 1,9 million m²
- Average energy savings per building 43%
- Total annual energy savings 60 GWh

Example: Sõpruse pst 202, Tallinn

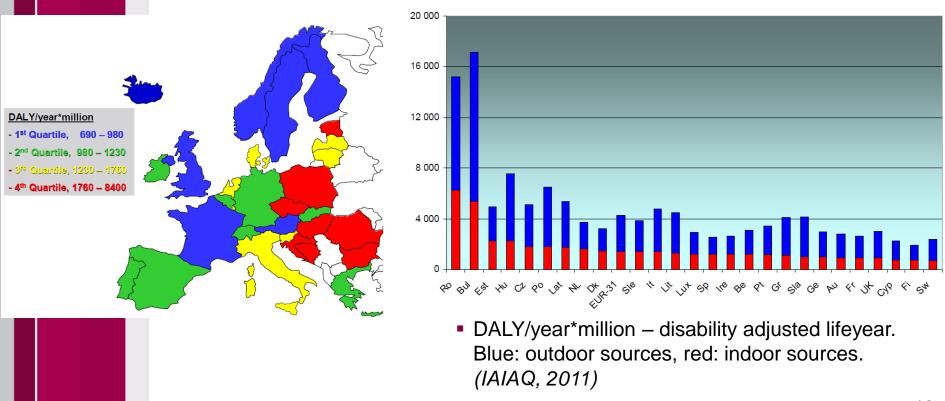
- 11 375 m² (162 ap. 2012-2013)
- Investment € 2 062 000, 181 €/m²
- Grant 35% € 721 600, 63 €/m²
- Credit € 1 340 000, 20 years
- Measured annual savings 63%, ~500 MWh

Example: Sõpruse pst 202, Tallinn


- External insulation of facade + roof insulation
- Triple windows (+moved to the insulation layer)
- Heating system: exhaust air heat pump + district heating
- Ventilation system: ventilation radiators and old stacks for extract

Ventilation problems 2010-2014

- No specific ventilation requirements were set however EN15251 indoor climate category II was required
- Very low ventilation rates except in centralized mechanical supply and extract ventilation systems (Central AHU):



Hamburg, A; Mikola, A; Kõiv T-A. Analysis of renovated apartment buildings indoor climate and energy consumption and their compliance with the standards and energy audits.

Integrated renovation: adequate ventilation and indoor climate

- IAQ associated DALYs = 4900 DALY = 186 M€ cost for Estonian goverment in every year
- ${\scriptstyle \bullet} \Rightarrow$ don't save energy on the cost of indoor climate

2015-2020 KredEx grants

- No need for state-loan (private banks have resources, well capitalized, low interest rates)
- 102 M€, grants 15, 25 and 40% (50% for design, technical consultants, supervision)
- More emphasis on preparation, ventilation, energy monitoring:
 - More detailed building design documents (full energy calculation in addition to energy audit + because of third party verification)
 - Investigation of building design documents by third party experts (run by KredEx having contracts with qualified experts)
 - Technical consultants
 - Commissioning protocols for ventilation airflow rates and heating system balancing
 - Agreements for post-maintenance
 - Measured EPC after one full year of operation
- Guarantees are still inforce

2015-2020 KredEx grants

15% financial support – EPC class E
25% financial support – EPC class D (EP ≤180 kWh/(m²·y))
40% financial support – EPC class C (EP ≤150 kWh/(m²·y))

- + some additional technical requirements especially for ventilation and insulation
- EPC class C the same value for new and renovated (in some countries could be called as renovation NZEB)

Breakdown of 40% renovation grant EPC class C requirement (150 kWh/m²y)

- Apartment building with gas heating (for district heat slightly more heating is accepted because of primary energy factor of 0.9)
- Applies both for renovation with 40% grant as well as for new building

	Energy need, kWh/m ²	Delivered energy, kWh/m ²	Primary en. factor, -	Primary energy, kWh/m ²
Space heating	22	25.7	1.0	25.7
Vent. heating	14	14.7	1.0	14.7
DHW	30	31.6	1.0	31.6
HVAC aux.	9.5	9.5	2.0	19.0
Lighting	7	7	2.0	14.0
Appliances	22.5	22.5	2.0	45.0
Total	105	111		150

- Energy needs of DHW, lighting and appliances are regulated values
- Delivered energy of DHW depends on the system (efficiencies etc., in this case no solar collectors or heat pumps are considered)

TALLINN UNIVERSITY OF TECHNOLOGY

KredEx ventilation requirements

25% renovation grant:

- Continuous an average ventilation (for total apartment) 0.5 1/h;
- Supply or intake air flow rates to be at least 10 I/s in bedrooms and living rooms at sound power level no more than 25 dB(A);
- Extract air flow rates at least 10 I/s WC, 15 I/s bathroom and 8 I/s kitchen (10 I/s in bathroom and 6 I/s in kitchen in one room flats);
- Heat recovery is NOT required (but depending on the building, EPC class D might be difficult to achieve without HR)

Additional requirements for 40% renovation grant:

 Mechanical supply and exhaust ventilation with heat recovery OR exhaust air heat pump with ventilation radiators required

Sizing of ventilation in typical apartments

Ventilation air flow rates according to requirements:

	Floor	Exctract airflow rate, I/s			Supply airflow rate, I/s				Air change			
	area, m²	WC	Bathr.	Kitchen	Total	Living	Bed1	Bed2	Bed3	Total	l/s m ²	1/h
Single room	35		10	6	16	10				10	0.46	0.63
1 bedroom	55		15	8	23	10	10			20	0.42	0.58
2 bedrooms	70	10	15	8	33	10	10	10		30	0.47	0.65
3 bedrooms	80	10	15	8	33	10	10	10	10	40	0.50	0.69

To balance the ventilation, supply airflow rates are to increased in small apartments and extract airflow rates in large apartments:

	Floor	Exctract airflow rate, I/s			Supply airflow rate, I/s				Air change			
	area, m ²	WC	Bathr.	Kitchen	Total	Living	Bed1	Bed2	Bed3	Total	l/s m ²	1/h
Single room	35		10	6	16	16				16	0.46	0.63
1 bedroom	55		15	8	23	11	12			23	0.42	0.58
2 bedrooms	70	10	15	8	33	10	12	11		33	0.47	0.65
3 bedrooms	80	12	16	12	40	10	10	10	10	40	0.50	0.69

KRED

TALLINN UNIVERSITY OF TECHNOLOGY

KredEx Insulation requirements

U-value and thermal bridge requirements

	25% grant	40% grant
External wall (opaque), W/(m ² K)	0.25	0.22
Windows (tot value), W/(m ² K)	1.1	1.1
Roof, W/(m²K)	0.15	0.11
Linear thermal bridge (window- wall) W/mK	-	0.05

In the case of 40% grant, windows are to be replaced and moved to the insulation layer in order to comply with thermal bridge requirement

Some examples of ventilation solutions: Natural ventilation

-kordne

♀ −kordne

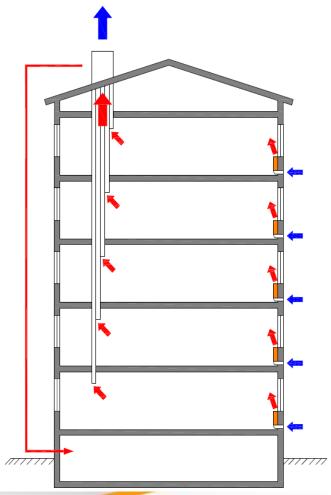
Loomulik ventilatsioon:

- Ebapiisav čhuvahetus (peale akende vahetust)
- Puudulik siseõnu kvaliteet
- Kontrollimatu toimivus
- Suur energiakulu
- Puhub peale (värske õhu klappidega)
- Liigniiskus

Room ventilation HR units

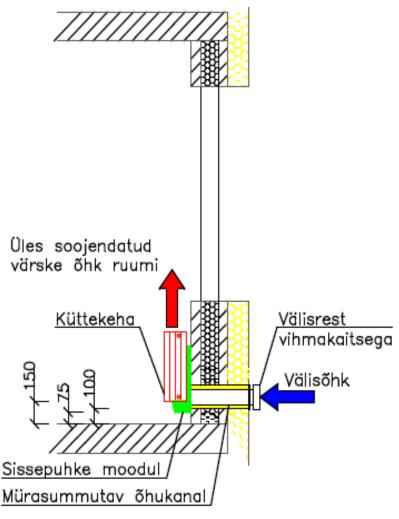
- Additional exhaust ventilation needed from toilets, bathrooms and kitchens destroying the heat recovery – room ventilation principle is not suitable for residential ventilation
- Most of equipment too noisy especially in bedrooms
- If small fans, may operate as intake vents because of stack effect

 no heat recovery at all
- Defrost protection often not working in a cold climate



Mechanical exhaust, exhaust air heat pump and ventilation radiator

- Heat recovery of: 60-70% (to domestic hot water and return of heating)
- Intake air: ventilation radiators in living rooms and bedrooms
- Extract air: kitchen, WC, bathroom
- Heat pumps: rooftops or in the basement
- Extract ductwork: tightened stacks or new



Mechanical exhaust, exhaust air heat pump and ventilation radiator

- Achievement of EPC class C may need some additional measures (better insulation, PV or heat recovery from waste water)
- Utilization of existing stacks need to be cleaned and tightened – airflow rate measurements protocols are required

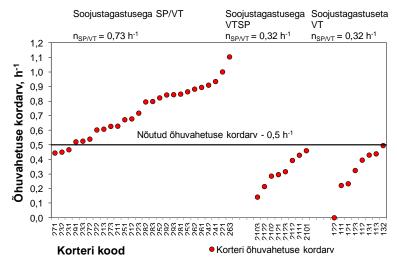
Mechanical supply and extract heat recovery ventilation – rooftop and facade installation – no ductwork in apartments

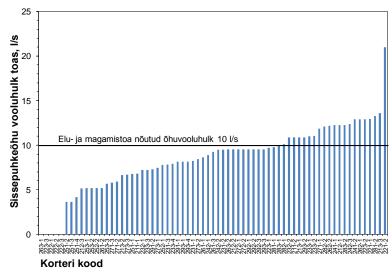
2015 innovation – economic facade installation of HRV ventilation

TT The

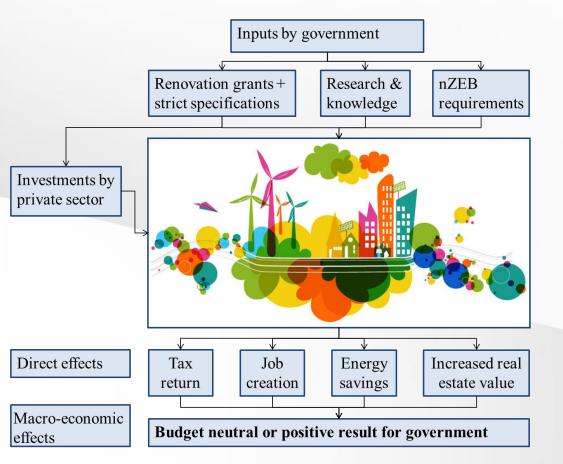
Experience with new system

- 90% of the applications for 40% grant, first year was slow start, but then more applications than planned
- Key figures for 40% grant projects:
- Average financial support 108 €/m²
- Average renovation cost (grant included) 270 €/m²
- Average renovation cost 702 000 € (40 ap./2600 m²)
- About 400 buildings (102 M€ grants)
- Centralized mechanical supply and extract HRV with rooftop AHU and facade ductwork installation one of the most popular ventilation solutions





Ventilation 2015-2017

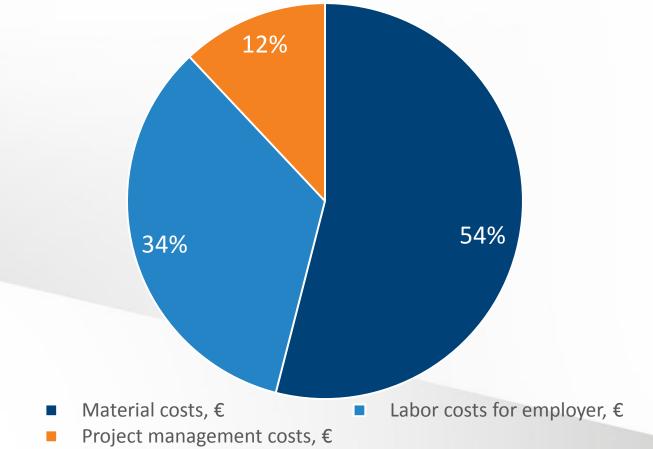

- Measurement protocols report required ventilation rates in all apartments
- Measured in operation, average of all apartments 0,57 h⁻¹
- According to ventilation system:
 - Heat recovery mechanical supply and extract 0,73 h⁻¹
 - Exhaust air heat pump 0,32 h⁻¹
 - Mechanical exhaust 0,32 h⁻¹
- Supply and extract air flows in the rooms in adequate level:
 - Bedrooms and living rooms 9 L/s
 - Bathrooms and toilets 11 L/s
 - Average per person 6 L/s, pers

 \rightarrow First time in the history renovated apartments have adequate ventilation

Wider scope or renovation grants

TALLINN UNIVERSITY OF

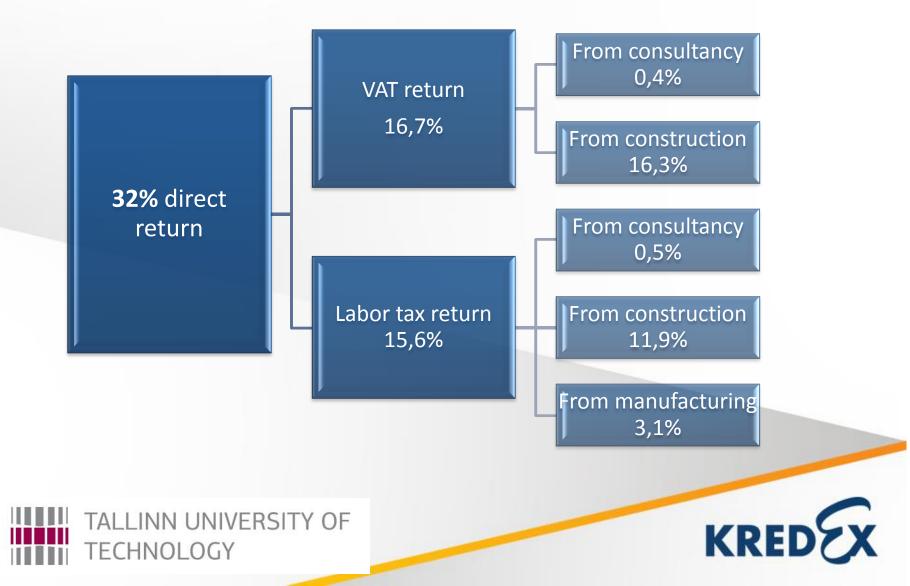
TECHNOLOGY


Estonian studies report highly significant economic benefits from renovation:

- quantified tax return of
 32% of renovation total cost
- job creation of **18 jobs** in a year per **1 M€** renovation cost

E. Pikas, J. Kurnitski, R. Liias, M. Thalfeldt. Quantification of economic benefits of renovation of apartment buildings as a basis for cost optimal 2030 energy efficiency strategies. *Energy and Buildings* 86 (2015) 151–160.

Cost structure of renovation projects



- Labor cost of 34% includes all labor cost in design, constructin and manufacturing
- Project management cost of 12% includes all costs in design and construction

Tax return breakdown

Summary

- Lessons learnt 2010-2014 period poor ventilation sometimes resulting in moldy apartments the most significant problem
- 2015-2020 grants require HRV ventilation, and moving windows to insulation level in the case of 40% grant as major changes
- Both changes were first seen as "fully impossible" by stakeholders, but after 6 months economic solutions were found
- Model renovation solutions KredEx renovation manual is prepared – designers can copy and customize
- Evidence on win-win-win situation:
 - occupants benefit from increased real estate value, monthly payment for the occupant roughly at the same level before and after the renovation
 - government from tax return and job creation
 - environment from energy/emission reduction

